A methodology for predicting cattle's dung position in pasture

Rena YOSHITOSHI^{1*}, Nariyasu WATANABE², Kensuke KAWAMURA^{1,3} HIROSHIMA UNIVERSITY Seiichi SAKANOUE², Jihyun LIM¹ and Taisuke YASUDA⁴

1: Graduate School for International Development and Cooperation, Hiroshima University, Japan. 2: NARO Hokkaido Agricultural Research Center, Japan. 3: The Research Center for Animal Science (RCAS), Hiroshima University, Japan 4: Mount Fuji Research Institute, Japan

Introduction

Background

- Livestock excrement is one of the major sources of greenhouse gas (GHG) emission in grazed pasture.
- It is important for farmers to understand the mechanisms of these gases production from agricultural fields and the factors that control these mechanisms.

Where do livestock spend their time and when do they excrete?

Results

Comparison among GLM, GLMM and CAR models

 \rightarrow GHG palliative economically and efficiently

Objective

Estimating spatial distribution of cattle's excrement in a slope grazed pasture of Hokkaido, Japan.

Materials & Methods

Study site

Location NARO Hokkaido Agricultural Research Center (42° 59'N, 141° 24'E), Japan

- A mixed sown pasture (0.85 ha)
- Northeast slope (115–135 m above sea level)
- 20 cows were grazed (4 cows were fitted with
- GPS tracking collars).

Data set

Date The number of dung Grazing trial: June 16–18, 2010 per 100 m² grid cell

Figure 1: Actual and predicted values of the number of cattle's dung (n) in each grid (10 m \times 10 m) using GLM (a), GLMM (b) and CAR model (c).

Results of CAR model

Table 1: Posterior means (PMEAN), posterior standard deviations (PSD), 95% posterior probability intervals (PPI) obtained by MCMC.

Parameter	PMEAN	PSD	2.5%	50%	97.5%
b_1	2.366	0.039	2.288	2.367	2.441
b_2	0.233	0.064	0.105	0.234	0.357
b_3	-0.240	0.116	-0.468	-0.240	-0.011
tau	3.454	1.024	1.924	3.300	5.897

R hat were 1 and effective sample size were enough for each parameter.

 \bullet CAR model had a posterior mean b_1 of 2.37, with 95% PPI of 2.29 to 2.44, a posterior mean b_2 of 0.23, with 95% PPI of 0.11 to 0.36 and a posterior mean b_3 of -0.24, with 95% PPI of -0.47 to -0.01. All parameters didn't have 0 with 95% PPI.

After the grazing treatment, we set 10 m \times 10 m grid cell in the paddock and counted the number of dung in each cell.

- GPS tracking collar (1-min interval)
- \rightarrow geographic information
- Accelerometer (4-second intervals)
- Grazing observation by 3 trained observers (1-min interval, 15) hours data)
- \rightarrow animal activity for 4 cows. Yoshitoshi et al. (2013)
- Vegetation survey
- \rightarrow GBM (green herbage biomass), CP (crude protein)

GIS data per grid (10m × 10m)

Average Standard deviation Min Max

- Response valuable: the number of dung
- Explanatory valuable: **animal activity** (active[**G**] or
- inactive[O]), GBM, CP, slope, distance from water trough and fence, easting and northing

Modeling methodology

12.7

8.0

35

Intrinsic Gaussian CAR (conditional autoregressive) model

number of dung ~ $Poisson(\lambda_i)$

 $log(\lambda_i) = b_1 + b_2GBM + b_3distance$ from water trough + rho_i (spatial random effects)

Actual and predicted values of the number of dung

Figure 2: Actual and mean of predicted values and 95% PPI based on CAR model.

Conclusions

- 1. Spatial data analyses for estimating spatial distribution of dung by cows need to considering random effect (Figure1)
- 2. GBM and distance from water trough affects the distribution

 $b_1 \sim Uniform(-10,10), b_2 \sim Uniform(-10,10), b_3 \sim Uniform(-10,10)$ $rho_i \sim CAR(Adj[], Weights[], Num[], tau), tau \sim Gamma(0.0001, 0.0001)$ where b_1 is intercept, b_2 and b_3 are coefficient. The *rho* is spatial random effects from each grid position.

The detail of MCMC (Markov chain Monte Carlo method)

- Number of chains : 3
- Number of draws from posterior for each chain : 100,000 Number of draws to discard as burn in : 30,000 Thinning rate : 100

R statistical software, version 2.12.1 OpenBUGS, version 3.2.2.

Rena YOSHITOSHI, Ph.D. student IDEC, Hiroshima University, JAPAN Email: rena.yoshi1210@gmail.com

of dung (Table1)

3. Bayesian model is available to estimate spatial distribution of cattle's excrement in grazed pasture. (Figure2)

Future study

Other parameters to be evaluated - In this study, we used two: GBM and distance from water trough as explanatory valuable. Feasibility of the model in other paddocks to be validated. Combined measured GHG emissions from cattle's excrement.

Reference

Yoshitoshi, R., Watanabe, N., Kawamura, K., Sakanoue, S., Mizoguchi, R., Lee, H.J., Kurokawa, Y. (2013) Distinguishing cattle foraging activities using an accelerometly-based activity monitor. Rangerand Ecology and Management, 66, 382-386.