Ground-based camera system for monitoring herbage biomass in Italian ryegrass field

Fan Xinyan¹, Kensuke Kawamura^{1,2}, Jihyun Lim¹, Rena Yoshitoshi¹ Norio Yuba^{1,3}, Hyo-Jin Lee⁴ and Yuzo Kurokawa^{2,4}

1. Graduate School for International Development and Cooperation (IDEC), Hiroshima University, Japan; 2. The Research Center of Animal Science (RCAS), Hiroshima University, Japan 3. Hiroshima Prefectural Technology Research Institute, Higashi-Hiroshima, Japan; 4. Construction and Environment Research Institute, Sungkyunkwan University, Seoul, Korea

Introduction

HIROSHIMA UNIVERSITY

Background

- Italian ryegrass is one of the most important and widely used winter forage crop (approx. 61 000 ha) in Japan.
- Monitoring seasonal changes of herbage biomass (BM) and nutrient status of forage crop is important for practical fertilizer management and yield prediction.

Results

Regression model for BM estimation

Purpose

Develop a simple and cost-effective sensing system using V-NIR camera as a ground-based remote sensing device. Investigate seasonal changes of herbage BM in an Italian ryegrass field with the time-series image data.

Materials & Methods

Study site and field measurements

Location

- Setouchi Field Science Center, Hiroshima University (34° 23' N, 132° 43' E)
- Annual mean temperature: 13.6 °C
- Annual precipitation: 1453.5 mm

Field measurements

eight times measurements in Jan–May, 2013 (Number of sample: n = 114)

Figure 1: Polynomial regression based on (a) RCI (RCI_{G.NIR}) and (b) NDCI (NDCI_{G.NIR}) using G and NIR channels.

Seasonal changes of 4 color channels and BM

Aboveground biomass (BM, g m⁻²) Surface sward height (SSH, cm)

V-NIR camera system

- Observation period: Jan 1-May 13, 2013.
- Exposures: 10:30, 12:00 and 13:30 in a day.
- Sensor: Red (R), green (G), blue (B) and NIR (2592 × 1944 pixels [8-bit], JPEG)
- Spatial resolution: 0.625 mm
- Experimental design: 2.5 m nadir view; $1.6 \text{ m} \times 1.2 \text{ m}$ footprint
- Cost: approximately 80 000 JPY

Image processing and statistical analysis

RGB NIR DOY: 54 DOY: 88 DOY: 93

Time-series image processing

- Extract digital number (DN) from daily image (12:00)
- Average DN value within region of interest (ROI)
- Calculate color intensity by normalized algorithm
- Software: Matlab version 7.14 (Mathworks Inc., Sherborn, MA, USA)

Regression analysis to estimate BM

NIR during growing

season.

Figure 3: Seasonal changes of (a) BM and (b) its second derivative value in 2013. Vertical lines indicate start (DOY 80) and end (DOY 98) of QGS.

Messages

The NDCI using G and NIR channels showed the best predictive accuracy to estimate BM (Figure 1). Using the model, seasonal changes of BM and its quick growth stage could be calculated (Figure 3). We expected that these information include useful insights for farmer to determine appropriate timing of fertilizer application and cutting.

Polynomial regression: Ratio color index (RCI) and Normalized difference color index (NDCI) Predictive accuracy: Coefficients of determination (R^2) and Root-mean-squared error (RMSE)

Smoothing and quick growth stage detection

- Smoothing: HANTS (Harmonic ANalysis of Time Series) algorithm based on Fourier analysis (Verhoef 1996)
- Quick growth stage (QGS): The peaks of second derivative values of BM seasonal change identify the start and end of QGS.

Acknowledgements

We are grateful to all the staff of the Setouchi Field Science Center, Saijo Station, Hiroshima University, for their assistance in field experiments. This work was partially supported by the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Young Scientists (B) (No. 23780266).

Fan Xinyan, Graduate School for International Development and Cooperation, Hiroshima University, Japan Email d146859@hiroshima-u.ac.jp

July 30, 2015 RCAS International symposium Hiroshima university, Hiroshima, Japan